• <tr id='H1LPtY'><strong id='H1LPtY'></strong><small id='H1LPtY'></small><button id='H1LPtY'></button><li id='H1LPtY'><noscript id='H1LPtY'><big id='H1LPtY'></big><dt id='H1LPtY'></dt></noscript></li></tr><ol id='H1LPtY'><option id='H1LPtY'><table id='H1LPtY'><blockquote id='H1LPtY'><tbody id='H1LPtY'></tbody></blockquote></table></option></ol><u id='H1LPtY'></u><kbd id='H1LPtY'><kbd id='H1LPtY'></kbd></kbd>

    <code id='H1LPtY'><strong id='H1LPtY'></strong></code>

    <fieldset id='H1LPtY'></fieldset>
          <span id='H1LPtY'></span>

              <ins id='H1LPtY'></ins>
              <acronym id='H1LPtY'><em id='H1LPtY'></em><td id='H1LPtY'><div id='H1LPtY'></div></td></acronym><address id='H1LPtY'><big id='H1LPtY'><big id='H1LPtY'></big><legend id='H1LPtY'></legend></big></address>

              <i id='H1LPtY'><div id='H1LPtY'><ins id='H1LPtY'></ins></div></i>
              <i id='H1LPtY'></i>
            1. <dl id='H1LPtY'></dl>
              1. <blockquote id='H1LPtY'><q id='H1LPtY'><noscript id='H1LPtY'></noscript><dt id='H1LPtY'></dt></q></blockquote><noframes id='H1LPtY'><i id='H1LPtY'></i>

                12月24日 杨艳荣博士学术报告(数学与统计学院)

                作者:时间:2019-12-20浏览:10设置

                报 告 人: 杨艳荣 博士

                报告题目:Can we trust PCA on non-stationary data?

                报告时间:2019年12月24日(周二)上午10:00

                报告地点:静远楼1506报告厅

                主办单位:数学与统计学院、科学技术研究院

                报告人简介:

                       杨艳荣,澳大利亚国立大学高级讲师,毕♀业于新加坡南洋理工大学,主要研究方向为高维统『计推断、随机矩阵理论、函数型数据分析等,在Annal of Statistics, JRSSB, JASA等统计学顶级期刊发表多篇学术论文。

                报告摘要:

                        This paper establishes asymptotic properties for spiked empirical eigenvalues for high-dimensional data with both cross-sectional dependence and a dependent sample structure. A new finding from the established theoretical results is that spiked empirical eigenvalues will reflect the dependent sample structure instead of the cross-sectional structure under some scenarios, which indicates that principal component analysis (PCA) may provide inaccurate inference for cross-sectional structures. An illustrated example is provided to show that some commonly used statistics based on spiked empirical eigenvalues misestimate the true number of common factors. As an application of high-dimensional time series, we propose a test statistic to distinguish the unit root from the factor structure and demonstrate its effective finite sample performance on simulated data. Our results are then applied to analyze OECD healthcare expenditure data and U.S. mortality data, both of which possess cross-sectional dependence as well as non-stationary temporal dependence. It is worth mentioning that we contribute to statistical justification for the benchmark paper by Lee and Carter (1992, JASA) in mortality forecasting.


                返回原图
                /